Kinect Validation of Ergonomics in Human Pick and Place Activities Through Lateral Automatic Posture Detection

نویسندگان

چکیده

In this paper we evaluate a system based on the Microsoft Kinect™ sensor, aimed at automatic detection of risk postures during human work activities. We first introduce pick and place task, where three different lateral standing subjects move light cardboard boxes from various levels bookcase to its top, then putting them back their original places. They repeat task over several cycles capture all natural movements in continuous way using Kinect, storing joint positions color images. Secondly, positions, our detects specific following definitions Rapid Upper Limb Assessment (RULA) method. Finally, compare posture detections by with baseline made panel five experts who used captured study find that have problems distinguish among some RULA cycle because narrow margin difficulty perceive if limb reached certain position; which is particularly true for cases wrist neck. This leads larger false positive rate lower general accuracy, detecting do not. After applying ±1° relaxation system, negligible perception, are able reach an accuracy 0.93 comparison baseline. Our results show suitability Kinect

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances

در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...

An Automatic Detection of the Fire Smoke Through Multispectral Images

One of the consequences of a fire is smoke. Occasionally, monitoring and detection of this smoke can be a solution to prevent occurrence or spreading a fire. On the other hand, due to the destructive effects of the smoke spreading on human health, measures can be taken to improve the level of health services by zoning and monitoring its expansion process. In this paper, an automated method is p...

متن کامل

Multiple Object Detection for Pick-and-Place Applications

This paper presents a novel approach for detecting multiple instances of the same object for pick-and-place automation. The working conditions are very challenging, with complex objects, arranged at random in the scene, and heavily occluded. This approach exploits SIFT to obtain a set of correspondences between the object model and the current image. In order to segment the multiple instances o...

متن کامل

Pick to place trajectories in human arm training environment.

This paper presents a new method of trajectory planning in rehabilitation robotics. First were measured in healthy subject the pick to place trajectories while haptic robot is in zero impedance space. B-spline approximation is used to mathematically define the measured paths. This trajectory path serves as a central line for the rounding haptic tunnel. In addition to radial elastic and damping ...

متن کامل

Fall Detection System Based on Kinect Sensor Using Novel Detection and Posture Recognition Algorithm

Elderly suffers from injuries or disabilities through falls every year. With a high likelihood of falls causing serious injury or death, falling can be extremely dangerous, especially when the victim is home-alone and is unable to seek timely medical assistance. Our fall detection systems aims to solve this problem by automatically detecting falls and notify healthcare services or the victim’s ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3101964